Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (199)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37747219

RESUMO

Leptomeningeal lymphatic endothelial cells (LLECs) are a recently discovered intracranial cellular population with a unique distribution clearly distinct from peripheral lymphatic endothelial cells. Their cellular function and clinical implications remain largely unknown. Consequently, the availability of a supply of LLECs is essential for conducting functional research in vitro. However, there is currently no existing protocol for harvesting and culturing LLECs in vitro. This study successfully harvested LLECs using a multi-step protocol, which included coating the flask with fibronectin, dissecting the leptomeninges with the assistance of a microscope, enzymatically digesting the leptomeninges to prepare a single-cell suspension, inducing the expansion of LLECs with vascular endothelial growth factor-C (VEGF-C), and selecting lymphatic vessel hyaluronic receptor-1 (LYVE-1) positive cells through magnetic-activated cell sorting (MACS). This process ultimately led to the establishment of a primary culture. The purity of the LLECs was confirmed through immunofluorescence staining and flow cytometric analysis, with a purity level exceeding 95%. This multi-step protocol has demonstrated reproducibility and feasibility, which will greatly facilitate the exploration of the cellular function and clinical implications of LLECs.


Assuntos
Células Endoteliais , Fator C de Crescimento do Endotélio Vascular , Reprodutibilidade dos Testes , Separação Celular , Citometria de Fluxo
2.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607103

RESUMO

Pericytes are crucial mural cells situated within cerebral microcirculation, pivotal in actively modulating cerebral blood flow via contractility adjustments. Conventionally, their contractility is gauged by observing morphological shifts and nearby capillary diameter changes under specific circumstances. Yet, post-tissue fixation, evaluating vitality and ensuing pericyte contractility of imaged brain pericytes becomes compromised. Similarly, genetically labeling brain pericytes falls short in distinguishing between viable and non-viable pericytes, particularly in neurologic conditions like subarachnoid hemorrhage (SAH), where our preliminary investigation validates brain pericyte demise. A reliable protocol has been devised to surmount these constraints, enabling simultaneous fluorescent tagging of both functional and non-functional brain pericytes in brain sections. This labeling method allows high-resolution confocal microscope visualization, concurrently marking the brain slice microvasculature. This innovative protocol offers a means to appraise brain pericyte contractility, its impact on capillary diameter, and pericyte structure. Investigating brain pericyte contractility within the SAH context yields insightful comprehension of its effects on cerebral microcirculation.


Assuntos
Hemorragia Subaracnóidea , Humanos , Pericitos , Encéfalo , Diagnóstico por Imagem , Circulação Cerebrovascular
3.
Neuroreport ; 33(16): 690-696, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36165027

RESUMO

BACKGROUND AND PURPOSE: Subarachnoid hemorrhage (SAH) is associated with sustained vasoconstriction in retinal vessels and vasoconstriction leads to retinal ischemia and hypoxia. Our previous finding also revealed the changes in hypoxia-related elements in the retina after SAH, further lending weight to the hypothesis that retinal vasospasm and hypoxia after SAH. Deferoxamine is a high-affinity iron chelator with reported neuroprotective effects against stroke. Here, we aimed to explore the effects of deferoxamine on retinal hypoxia after SAH. METHODS: SAH was established and deferoxamine was injected intraperitoneally for 3 days in the treatment group. To detect retinal new vessels, platelet endothelial cell adhesion molecule (CD31) was labeled by immunofluorescence and immunohistochemistry. Furthermore, the effects of deferoxamine on the expression of vascular endothelial growth factor A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α) were revealed by western blot analysis. RESULTS: The immunofluorescence and immunohistochemical staining of CD31 revealed a marked increase in new vessels in the retinal ganglion cell layer after deferoxamine treatment. By western blot analysis, HIF-1α and VEGF-A increased gradually in the first day and then rebounded to a new level on day 7. A deferoxamine-induced increase in HIF-1α/VEGF-A expression was also confirmed by western blot. CONCLUSIONS: Our findings suggest that modulating the application of deferoxamine may offer therapeutic approaches to alleviate retinal complications after SAH.


Assuntos
Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Animais , Moléculas de Adesão Celular/uso terapêutico , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia , Quelantes de Ferro/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Retina , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Neuroscience ; 494: 51-68, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35158017

RESUMO

Neuron apoptosis is a feature of secondary injury after traumatic brain injury (TBI). Evidence implies that excess calcium (Ca2+) ions and reactive oxidative species (ROS) play critical roles in apoptosis. In reaction to increased ROS, the anti-oxidative master transcription factor, Transient receptor potential Ankyrin 1 (TRPA1) allows Ca2+ ions to enter cells. However, the effect of TBI on the expression of TRPA1 and the role of TRPA1 in TBI are unclear. In the present study, TBI in the mouse brain was simulated using the weight-drop model. The process of neuronal oxidative stress was simulated in HT22 neuronal cells by treatment with hydrogen peroxide. We found that TRPA1 was significantly upregulated in neurons at 24 h after TBI. Neuronal apoptosis was increased in the in vivo and in vitro models; however, this increase was reduced by the functional inhibition of TRPA1 in both models. After TBI, TRPA1 was upregulated via nuclear factor, erythroid 2 like 2 (Nrf2) in neurons. TRPA1-mediated neuronal apoptosis after TBI might be achieved in part through the CaMKII/AKT/ERK signaling pathway. To sum up, TBI-triggered TRPA1 upregulation in neurons is mediated by Nrf2 and the functional blockade of TRPA1 attenuates neuronal apoptosis and improves neuronal dysfunction, partially mediated through the activation of the calcium/calmodulin dependent protein kinase II (CaMKII) extracellular regulated kinase (ERK)/protein kinase B (AKT) signaling pathway. Our results suggest that functional blockade of TRPA1 might be a promising therapeutic intervention related to ROS and Nrf2 in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Canal de Cátion TRPA1 , Animais , Apoptose , Lesões Encefálicas Traumáticas/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Canal de Cátion TRPA1/metabolismo
5.
Front Pharmacol ; 13: 1061457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703738

RESUMO

Background: Erythrocytes and their breakdown products in the subarachnoid space (SAS) are the main contributors to the pathogenesis of subarachnoid hemorrhage (SAH). Dobutamine is a potent ß1-adrenoreceptor agonist that can increase cardiac output, thus improving blood perfusion and arterial pulsation in the brain. In this study, we investigated whether the administration of dobutamine promoted the clearance of red blood cells (RBCs) and their degraded products via meningeal lymphatic vessels (mLVs), thus alleviating neurological deficits in the early stage post-SAH. Materials and methods: Experimental SAH was induced by injecting autologous arterial blood into the prechiasmatic cistern in male C57BL/6 mice. Evans blue was injected into the cisterna magna, and dobutamine was administered by inserting a femoral venous catheter. RBCs in the deep cervical lymphatic nodes (dCLNs) were evaluated by hematoxylin-eosin staining, and the hemoglobin content in dCLNs was detected by Drabkin's reagent. The accumulation of RBCs in the dura mater was examined by immunofluorescence staining, neuronal death was evaluated by Nissl staining, and apoptotic cell death was evaluated by TUNEL staining. The Morris water maze test was used to examine the cognitive function of mice after SAH. Results: RBCs appeared in dCLNs as early as 3 h post-SAH, and the hemoglobin in dCLNs peaked at 12 h after SAH. Dobutamine significantly promoted cerebrospinal fluid (CSF) drainage from the SAS to dCLNs and obviously reduced the RBC residue in mLVs, leading to a decrease in neuronal death and an improvement in cognitive function after SAH. Conclusion: Dobutamine administration significantly promoted RBC drainage from cerebrospinal fluid in the SAS via mLVs into dCLNs, ultimately relieving neuronal death and improving cognitive function.

6.
Front Immunol ; 12: 623256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381441

RESUMO

Nuclear factor (NF)-κB-ty -50mediated neuroinflammation plays a crucial role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). As an important negative feedback regulator of NF-κB, A20 is essential for inflammatory homeostasis. Herein, we tested the hypothesis that A20 attenuates EBI by establishing NF-κB-associated negative feedback after experimental SAH. In vivo and in vitro models of SAH were established. TPCA-1 and lentivirus were used for NF-κB inhibition and A20 silencing/overexpression, respectively. Cellular localization of A20 in the brain was determined via immunofluorescence. Western blotting and enzyme-linked immunosorbent assays were applied to observe the expression of members of the A20/tumor necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB pathway and inflammatory cytokines (IL-6, IL-1ß, TNF-α). Evans blue staining, TUNEL staining, Nissl staining, brain water content, and modified Garcia score were performed to evaluate the neuroprotective effect of A20. A20 expression by astrocytes, microglia, and neurons was increased at 24 h after SAH. A20 and inflammatory cytokine levels were decreased while TRAF6 expression was elevated after NF-κB inhibition. TRAF6, NF-κB, and inflammatory cytokine levels were increased after A20 silencing but suppressed with A20 overexpression. Also, Bcl-2, Bax, MMP-9, ZO-1 protein levels; Evans blue, TUNEL, and Nissl staining; brain water content; and modified Garcia score showed that A20 exerted a neuroprotective effect after SAH. A20 expression was regulated by NF-κB. In turn, increased A20 expression inhibited TRAF6 and NF-κB to reduce the subsequent inflammatory response. Our data also suggest that negative feedback regulation mechanism of the A20/TRAF6/NF-κB pathway and the neuroprotective role of A20 to attenuate EBI after SAH.


Assuntos
Encéfalo/patologia , NF-kappa B/metabolismo , Hemorragia Subaracnóidea/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Retroalimentação Fisiológica , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Transdução de Sinais , Hemorragia Subaracnóidea/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
7.
Neuroreport ; 32(6): 472-478, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33788818

RESUMO

Traumatic brain injury (TBI) is recognized as the most influential risk factor for neurodegenerative diseases later in life, including Alzheimer's disease. The aberrant genesis of amyloid-ß peptides, which is triggered by TBI, is associated with the development of Alzheimer's disease. Evidence suggests that iron plays a role in both the production of amyloid-ß and its neurotoxicity, and iron overload has been noted in the brain after TBI. We therefore investigated the effects of an iron-chelating treatment on amyloid-ß genesis in a weight-drop model of TBI in mice. Human brain samples were obtained from patients undergoing surgery for severe brain trauma. The Institute of Cancer Research mice were treated with deferoxamine by intraperitoneal injection after TBI induction. Changes in amyloid-ß(1-42) were assessed using western blot and immunohistochemical staining. Ferritin was also detected using western blot to investigate iron deposition in the mice brain. Immunofluorescent terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was also performed to evaluate neural apoptosis. The amyloid-ß(1-42) was markedly elevated after TBI in both humans and mice. Deferoxamine treatment in mice significantly decreased the levels of both amyloid-ß(1-42) and ferritin in the brain, and reduced TBI-induced neural cell apoptosis. The iron chelator deferoxamine can alleviate the increase of amyloid-ß(1-42) in the brain after TBI, and may therefore be a potential therapeutic strategy to prevent TBI patients from undergoing neurodegenerative processes.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/efeitos dos fármacos , Desferroxamina/farmacologia , Ferritinas/metabolismo , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos dos fármacos , Sideróforos/farmacologia , Adulto , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo
8.
Neurosci Lett ; 742: 135554, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352284

RESUMO

BACKGROUND AND PURPOSE: The patients who survive subarachnoid hemorrhage (SAH) often have long-term neurological complications. There are no reports about the pathological change of retina after SAH. METHODS: An experimental model of SAH was established by injecting autologous blood into the prechiasmatic cistern of Sprague-Dawley rats. Hematoxylin and eosin (HE) staining was performed to show the alternation of morphology in retina after SAH. To detect the retinal new vessels (NVs), CD31 was labelled by immunofluorescence and immunohistochemistry. The time-course expressions of vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α (HIF-1 α) was also revealed by Western blot analysis. RESULTS: A clear reduction of retinal ganglion cells (RGCs) was noticed after SAH. The immunofluorescence and immunohistochemical staining of CD31 reveals a large number of NVs in RGC layer after SAH compared with the normal controls. The level of VEGF-A in the retina after SAH was increased and peaked at 12h and 14 d. The expression of HIF-1α in the retina increased as early as 3 h after SAH, reached a peak at 12 h after SAH. CONCLUSIONS: The results showed that SAH induced the retina hypoxia resulting in the reduction of RGCs, increase of NVs and activation of NVs related HIF-1α/VEGF-A pathway.


Assuntos
Hipóxia/metabolismo , Retina/metabolismo , Hemorragia Subaracnóidea/metabolismo , Animais , Hipóxia/etiologia , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Retina/patologia , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
J Neurochem ; 157(3): 574-585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289070

RESUMO

Nuclear factor (NF)-κB-mediated neuroinflammation is an important mechanism of intracerebral hemorrhage (ICH)-induced neurotoxicity. Silent information regulator 1 (SIRT1) plays a multi-protective effect in a variety of diseases by deacetylating and inhibiting NF-κB/p65. However, the role of SIRT1 in brain damage following ICH remains unclear. We hypothesized that SIRT1 can protect against ICH-induced brain damage by inhibiting neuroinflammation through deacetylating NF-κB/p65. The ICH model was induced in vivo (with collagenase) and in vitro (with hemoglobin). Resveratrol and Ex527 were administered to activate or inhibit SIRT1, respectively. Western blot, immunohistochemistry, and immunofluorescence assays were performed to detect the expression of SIRT1 and p65. Enzyme-linked immunosorbent assays (ELISAs) were used to explore tumor necrosis factor (TNF)-α and interleukin (IL)-1ß release. The neurological score, brain water content, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and brain hemoglobin content were determined to evaluate the neuroprotective effect of SIRT1. SIRT1 expression was decreased, whereas the level of acetylated p65 (Ac-p65) was elevated after ICH in vivo. Moreover, hemoglobin treatment decreased the expression of SIRT1 in vitro. Activation of SIRT1 by resveratrol had a neuroprotective effect, along with decreased levels of Ac-p65, IL-1ß, TNF-α, and apoptosis after ICH. The effect of resveratrol was abolished by the SIRT1 inhibitor Ex527. Our results are consistent with the hypothesis that SIRT1 exerts a neuroprotective effect after ICH by deacetylating p65 to inhibit the NF-κB-dependent inflammatory response.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Fármacos Neuroprotetores , Sirtuína 1/genética , Fator de Transcrição RelA/efeitos dos fármacos , Acetilação , Animais , Apoptose/efeitos dos fármacos , Hemorragia Cerebral/induzido quimicamente , Colagenases , Encefalite/tratamento farmacológico , Encefalite/patologia , Hemoglobinas , Injeções Intraventriculares , Interleucina-1beta/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Resveratrol/uso terapêutico , Sirtuína 1/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Life Sci ; 257: 118050, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634425

RESUMO

BACKGROUND AND PURPOSE: Early brain injury is an essential pathological process after subarachnoid hemorrhage (SAH), with many cell death modalities. Ferroptosis is a newly discovered regulated cell death caused by the iron-dependent accumulation of lipid peroxidation, which can be prevented by glutathione peroxidase 4 (GPX4). Our study aimed to investigate the role of GPX4 in neuronal cell death after experimental SAH. METHODS: In vivo experimental SAH was induced by injecting autologous arterial blood into the prechiasmatic cistern in male Sprague-Dawley rats. Meanwhile, the in vitro SAH model was performed with primary rat cortical neurons cultured in medium containing hemoglobin (Hb). Adenovirus was used to overexpress GPX4 before experimental SAH. GPX4 expression was detected by western blot and immunofluorescence experiments. Malondialdehyde (MDA) was measured to evaluate the level of lipid peroxidation. Nissl staining was employed to assess cell death in vivo, whereas lactate dehydrogenase (LDH) release was used to evaluate cell damage in vitro. The brain water content and neurological deficits were evaluated to determine brain injury. RESULTS: Endogenous GPX4 was mainly expressed in neurons, and its expression decreased at 24 h after experimental SAH. Overexpression of GPX4 significantly reduced lipid peroxidation and cell death in the experimental SAH models both in vivo and in vitro. Moreover, overexpression of GPX4 ameliorated brain edema and neurological deficits at 24 h after SAH. CONCLUSIONS: The decrease of GPX4 expression potentially plays an important role in ferroptosis during early brain injury after SAH. Overexpression of GPX4 has a neuroprotective effect after SAH.


Assuntos
Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/uso terapêutico , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas/etiologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...